

The Changing Role of Cloud Servers

What are the concerns of different parties to meet the growth in cloud deployments?

Where can cloud services exist in OpenADR implementations?

Concerns from Different Perspectives

Customers (through vendor offerings) are embracing the cost effectiveness and simplicity of cloud-based solutions

...but this needs to be balanced with...

- Utilities' need to address resource reliability and long-term availability of services, esp. where rate-payer funded incentives are provided to encourage adoption
- The purpose of the panel discussion is to understand differing parties perspectives and suggest ideas to enhance DR participation using cloud solutions

Potential OpenADR Cloud Elements

Any endpoint (VEN or even VTN) could be implemented as a cloud based service

VENs are the primary concern, since ultimately, load control devices need to respond to VTN requests whether they receive a direct or "translated" (to their local protocol) request from a VTN openAD

Panel Discussion

Albert Chiu, Pacific Gas & Electric

Senior Program Manager, Demand Response

Carl Besaw, Southern California Edison

Senior Project Manager, Mass Market Solutions, New Program Development & Launch

Mark Kerbel, REGEN Energy

Co-founder & EVP Business Development

Peter Hunt, SmartCloud

Director of Sales, Energy & Utilities

Cloud based solution pros and cons (utility perspectives)

Pros

- When the cost benefit becomes a barrier if the VEN client is built within the devices
- Program design options
- Interoperability risk
- Cons
 - Stranded Assets
 - Cost to use the "toll road"
 - DR signal liability
 - Program M&E

Why Cloud based Solutions?

- Intelligence moved from devices to the cloud
- Lower cost devices (not as intelligent, no EMS, etc.)
- Solution for Small Commercial Customers
- Leverages existing OpenADR infrastructure
- Simpler Installation
- Easier Upgrades

Cloud Considerations

Security

- How does the security of DR cloud solutions compare to Financial and other security conscious institutions?
- What are the risks associated with a potential breach?
- Stranded Assets
 - Do lower cost solutions mitigate this concern?
 - What is the potential for connecting devices to an alternative cloud?
 - Can this concern be mitigated with contractual obligations?
 - What if the cloud provider becomes a DR aggregator?
- OpenADR 2.0b capabilities
 - Can a cloud based solution implement 2.0b capabilities?
 - Are vendors willing to provide feedback on a per device level to an aggregation point in the cloud?

Range of C&I Deployments

SmartCloud - DR Applications

- SmartCloud founded in 2009
 - DR applications since 2010
 - Rockwell Automation investment in 2013
 - Deep experience in software and systems integration for mission critical data & decision management
 - Real-time, expert systems, artificial intelligence (AI)
- Hosting: Cloud and/or NERC-CIP environment
- SmartCloud DR role:
 - DRAS (Demand Response Automation Server)
 - Broker between loads, dispatching entity and the ISO

Example: NYISO DSASP (Demand Side Ancillary Response Program)

- Capture real-time telemetry from energy consumers
- Simultaneously receive DR commands from NYISO
- Reasoning applied in real-time for aggregator to issue curtailment notifications and track actual curtailment performance for aggregator (logs)
- Match bids every 6 seconds

Current: Industrial (no OpenADR)

Next: Integrate OpenADR 2.0b for Commercial Apps

VTN added to DRAS; VEN software in the device

Resources added dynamically

Future: Prioritize Dispatch via OpenADR 2.0b

E.g. Zone3/Feeder5, Zone3/Feeder2